Novel Adaptive Genetic Algorithm Sample Consensus

نویسندگان

  • Ehsan Shojaedini
  • Mahshid Majd
  • Reza Safabakhsh
چکیده

Random sample consensus (RANSAC) is a successful algorithm in model fitting applications. It is vital to have strong exploration phase when there are an enormous amount of outliers within the dataset. Achieving a proper model is guaranteed by pure exploration strategy of RANSAC. However, finding the optimum result requires exploitation. GASAC is an evolutionary paradigm to add exploitation capability to the algorithm. Although GASAC improves the results of RANSAC, it has a fixed strategy for balancing between exploration and exploitation. In this paper, a new paradigm is proposed based on genetic algorithm with an adaptive strategy. We utilize an adaptive genetic operator to select high fitness individuals as parents and mutate low fitness ones. In the mutation phase, a training method is used to gradually learn which gene is the best replacement for the mutated gene. The proposed method adaptively balance between exploration and exploitation by learning about genes. During the final Iterations, the algorithm draws on this information to improve the final results. The proposed method is extensively evaluated on two set of experiments. In all tests, our method outperformed the other methods in terms of both the number of inliers found and the speed of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel consensus quantitative structure-retention relationship method in prediction of pesticides retention time in nano-LC

In this study, quantitative structure-retention relationship (QSRR) methodology employed for modeling of the retention times of 16 banned pesticides in nano-liquid chromatography (nano-LC) column. Genetic algorithm-multiple linear regression (GA-MLR) method employed for developing global and consensus QSRR models. The best global GA-MLR model was established by adjusting GA parameters. Three de...

متن کامل

Adaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process

In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...

متن کامل

A SOLUTION TO AN ECONOMIC DISPATCH PROBLEM BY A FUZZY ADAPTIVE GENETIC ALGORITHM

In practice, obtaining the global optimum for the economic dispatch {bf (ED)}problem with ramp rate limits and prohibited operating zones is presents difficulties. This paper presents a new andefficient method for solving the economic dispatch problem with non-smooth cost functions using aFuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm  deals  with the issue ofcontrolling the ex...

متن کامل

Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm

An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...

متن کامل

Slope Stability Analysis Using a Self-Adaptive Genetic Algorithm

This paper introduces a methodology for soil slope stability analysis based on optimization, limit equilibrium principles and method of slices. In this study, the slope stability analysis problem is transformed into a constrained nonlinear optimization problem. To solve that, a Self-Adaptive Genetic Algorithm (GA) is utilized. In this study, the slope stability safety factors are the objective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09398  شماره 

صفحات  -

تاریخ انتشار 2017